For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
无论是物联网还是大数据技术都被各个企业广泛应用到不同行业之中,今天南宁达内大数据培训就给大家简单介绍一下,物联大数据智能服务知识分享。
从物联网“后端”来看,物联网可以看作是一个基于互联网的,以提高物理世界的运行、管理、资源使用效率等水平为目标的大规模复杂信息和智能服务系统。由于物联网“前端”在对物理世界感应方面具有高度并发的特性,并将产生大量引发“后端”深度互联和跨域协作需求的事件,从而使得上述物联大数据智能服务表现出以下性质:
不可预见性。对物理世界的感知具有实时性,会产生大量不可预见的事件,从而需要应对大量即时协同的需求;
涌现智能。对诸多单一物联网智能应用的集成能够提升对物理世界综合管理的水平,物联网“后端”是产生放大效应的源泉;
多维度动态变化。对物理世界的感知往往具有多个维度,并且是不断动态变化的,从而要求物联网“后端”具有更高的适应能力;
大数据量和实效性。物联大数据具有海量、实时、不间断、价值不一等特征,对物联网后端信息处理带来分布式、可伸缩运行支撑环境要求。
近年来,虽然云计算、大数据、人工智能技术发展蓬勃,但仍存在着软件技术离散,系统集成化能力不足,数据共享和应用开发手段不够灵活、可控和易用,以及新兴技术和模型与领域业务结合方法缺失等问题。具体地,如何有效地汇集、组织、共享、利用这些物联大数据成为各类新型智慧行业建设的关键。
相对于以人为中心的互联网数据,物联大数据面向物理世界,来自不同类型的设备,具有高吞吐量、时变连续、数据多源、时空相关、关联复杂、价值密度不均衡等鲜明特征,在具有巨大潜在价值同时也给应用建设带来了巨大困难,突出表现为三方面的挑战性问题:
(1)现有软件体系结构与集成需求失配问题,尤其是离散的软件栈和复杂运行支撑环境难以集成;
(2)传统系统构建模式和物联网复杂系统新特征的矛盾问题,特别是不确定性大数据应用需求难以快速响应;
(3)行业应用实施难度大、代价高、周期长的问题,尤其是行业用户仍旧难以有效参与和交互,领域知识仍难以复用。
综上所述,实时感应、高度并发、自主协同和涌现智能等特征要求从新的角度审视物联网“后端”信息基础设施,对当前云计算、云原生(包括容器、微服务、服务网格等)的研究提出了新的挑战,需要有针对性地研究物联大数据特定的应用集成和智能服务问题、体系结构及标准规范,特别是大量高并发事件驱动的应用自动关联和智能协作问题。
云原生下的物联大数据智能服务研究趋势
云原生是云计算的热点发展方向,其以容器、微服务、DevOps等技术为基础建立了一套新的云技术产品体系,强调应用的设计、实现和部署运维等方式应充分适应并利用及发挥云计算平台分布式、按需服务、弹性伸缩等特点。云原生可以物联大数据智能服务带来诸多必要的支撑和有益的基础。为此,我们需要有针对性地研究云原生背景下物联大数据特定的智能服务、应用集成、体系结构及标准规范等问题,特别是大量高并发事件驱动的应用自动关联和智能协作问题。
云原生下物联大数据运行环境
物联大数据处理涉及流式处理、批处理、流批混合处理等不同模式,同时需要大量结合新兴人工智能技术的物联大数据分析,这些处理和分析依赖MapReduce、Spark、Flink等不同计算模型和多样化机器学习模型,需要复杂的软硬件运行支撑环境,当前这些环境也大都没有采用微服务的架构设计。因此何建立一套融合物联大数据处理和分析需求的容器云及微服务管理与调度系统就成为一个关键挑战。
云原生下物联大数据服务体系
在物联网系统中将软件的实现与运维和用法相关部分(称为物联网服务)剥离,并纳入到云原生基础设施中(也是云计算的本质所在),这是大势所趋。针对物联大数据需求特征的优化策略、优化方法和涌现智能也将更多地以服务及服务组合的形式体现。如何设计与提供物联大数据服务已成为构建物联网应用和进行业务演算的基石。这些物联大数据服务的新形态,进一步推动云原生下服计算等相关学科的发展。
云原生下物联大数据系统的超级自动化
物联网智能服务发展期望能够实现大量高并发事件驱动的应用自动关联、智能协作和主动服务。超级自动化被Gartner连续三年列为战略级趋势,其在物联网背景下可以理解为通过一系列技术打通数据流、控制流、事件流、协作流,打破碎片化物联网数据及应用的壁垒和孤岛,有助于帮助“数字孪生”的真正落地。如何在现有DevOps方法和服务编排技术基础上,使能终用户“编程”实现超级自动化成为一个发展热点。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!请读者仅作参考。更多内容请加抖音太原达内IT培训学习了解。