
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
智能化运维管理随着互联网的不断发展而被众多企业引入并应用实践,而本文我们就通过案例分析来了解一下,智能化运维管理常见算法分享。
1、一元场景下的智能运维算法赋能:
指标+AI:应用时序数据类相关智能算法,赋能于指标计算,可以挖掘指标异常检测、容量预测、健康度检测等场景,实现指标场景智能化。
日志+AI:应用自然语言处理、分类聚类等智能算法于日志场景中,可以挖掘日志解析、日志实体识别、日志分类等场景,实现日志场景智能化。
追踪+AI:应用图算法等智能算法赋能于调用链场景中,可以挖掘路径曝光、调用链优化管理等场景,实现追踪场景智能化。
2、转化场景下的智能运维算法赋能:
日志→指标+AI:应用自然语言处理算法中的命名实体识别技术,赋能于日志模式的识别过程中,可以精准、高效识别日志中的指标信息,实现从日志到指标的转化场景智能化。
日志→追踪+AI:应用知识图谱、概率图模型等智能算法可以在一次调用周期中挖掘指标信息,应用于调用链分析、过程挖掘等场景中,实现从追踪到指标的转化场景智能化。
指标、日志、追踪→告警+AI:由于指标、日志、追踪均可以产生告警,反之,可以对统一事件下不同观测(指标、日志、追踪)的告警进行告警智能压缩、告警智能抑制并使用实体识别、语义识别等技术,实现从指标、日志、追踪到告警的转化场景智能化。
3、二元场景下的智能运维算法赋能:
指标+追踪+AI:系统故障往往会影响指标数据并沿着调用链进行传播,因此应用图模型(随机游走、概率图模型)等技术可以有效进行基于指标的根因定位,实现指标和追踪场景的智能化。
指标+日志+AI:当指标发生异常时,日志往往能够更清晰地展现异常发生时的系统状态,实现指标异常分析;同时,通过识别日志模式,将模式变化情况使用时间序列异常检测相关算法进行检测,实现指标和日志场景的智能化。
追踪+日志+AI:当系统发生故障时,分析系统调用链上的节点的日志模式、内容变化情况往往能够有效进行基于日志的根因定位,实现追踪和日志场景的智能化。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。