
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着 AI 的日益普及,GPU 已经从单纯的图形相关系统组件转变为深度学习和计算机视觉过程的一个组成部分。事实上,人们普遍认为 GPU 相当于普通计算机中的 CPU 的人工智能。首先,系统需要处理器内核来进行计算操作。与标准 CPU 相比,GPU 通常包含更多的内核。这允许这些系统为跨多个并行进程的多个用户提供更好的计算能力和速度。此外,深度学习操作处理大量数据。 GPU 的处理能力和高带宽可以轻松满足这些要求。
GPU具有强大的计算能力,可以配置为训练AI和深度学习模型(通常是同时进行)。如前所述,更大的带宽使GPU比普通CPU具有必要的计算优势。因此,人工智能系统可以允许大量数据集的输入,这可能会超过标准的CPU和其他处理器,从而提供更大的输出。最重要的是,在AI驱动的系统中,GPU的使用并不会占用大量内存。通常,计算大的、不同的任务需要在标准CPU中使用几个时钟周期,因为它的处理器按顺序完成任务,并且拥有有限数量的核心。
另一方面,即使是最基本的GPU也有自己的专用VRAM(视频随机访问内存)。因此,主处理器的内存不会被小型和中型进程占用。深度学习需要大量的数据集。虽然物联网等技术可以提供更广泛的信息,半导体芯片可以规范AI系统的数据使用,但GPU在计算能力和更大的内存储备方面提供了资源。因此,GPU 的使用限制了 AI 在处理速度方面的局限性。
广西南宁达内IT培训免费试听课程火热报名中,带你轻松入行,26大课程全国45个城市,129家中心均可就近学习,学完后,达内老师会帮助进行面试辅导,在面试前,就带你跨过可能存在的坑,让你入职更加顺利。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。