
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
半导体和人工智能系统在同一领域共存的现象非常普遍。有几家公司生产用于人工智能应用的半导体。在现有的半导体企业中,为了制造人工智能芯片或将人工智能技术嵌入到生产线上,实施了专门的项目。这类机构参与人工智能领域的一个突出例子是英伟达(NVIDIA),其包含半导体芯片的图形处理单元(GPU)被大量用于数据服务器,以进行人工智能训练。
半导体结构的改变可以提高人工智能电路的数据使用效率。半导体设计的改变可以提高人工智能内存存储系统的数据移动速度。除了增加功率,存储系统也可以变得更高效。
随着半导体芯片的参与,有几个想法可以改善人工智能系统的各个数据使用方面。其中一种想法是只在需要的时候向神经网络发送数据(而不是不断地通过网络发送信号)。另一个进步的概念是在与人工智能相关的半导体设计中使用非易失性存储器。正如我们所知,非易失性存储芯片在没有电源的情况下仍然可以保存保存的数据。将非易失性存储器与处理逻辑芯片相结合,可以创造出满足新型人工智能算法日益增长的需求的专用处理器。
虽然可以通过半导体的设计改善来满足人工智能的应用需求,但也有可能引发生产问题。由于对内存的巨大需求,人工智能芯片通常比标准芯片要大。因此,半导体公司将需要花更多的钱来制造它们。因此,开发人工智能芯片对他们来说没有多大经济意义。
为了解决这个问题,可以使用一个通用的人工智能平台。芯片供应商可以通过输入/输出传感器和加速器来增强这些类型的AI平台。使用这些资源,制造商可以根据不断变化的应用需求塑造平台。通用人工智能系统的灵活性可以为半导体公司带来成本效益,并大大减少人工智能的局限性。通用平台是连接基于人工智能的应用和改进的半导体的未来。
达内时代科技集团致力于培养面向电信和金融领域Java、C++、C#/.Net、Android、IOS、PHP、嵌入式、软件测试、UID、网络营销、网络工程、会计、UED、web、Unity3D、大数据、人工智能、云计算、童程童美等26大方向中高端软件人才课程与少儿教育课程。选择南宁软件开发培训,不再孤军奋战,轻轻松松做IT高薪白领。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。