
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
数据治理技术的应用在许多企业发展过程中都起到了非常重要的作用,今天我们就通过案例分析来简单了解一下,传统数据治理常见问题都有哪些。
数据民主化
数据民主化是使信息系统的普通非技术用户可以访问数字信息的过程,而无需IT参与。它是自助分析的基础,这种方法允许这些非技术用户(即:业务线人员)收集和分析数据,而无需寻求数据管理员、系统管理员或IT人员的帮助。
主动数据治理优先考虑数据民主化
这种方法不是将数据锁定在需要它的人之外,而是欢迎更多用户使用数据——但增加了指导使用的“护栏”,即:对产品的能力要求较高。例如:自动化预警、自动SQL和质量标志是“护栏功能”的用例。它们可以防止人们错误地使用数据,并指导合规使用,从而降低违规风险。
监管压力越来越大
欧盟的GDPR、美国的CCPA、中国的数据安全法、个人信息保护法要求正确合规的使用数据,并对违规者处以巨额罚款。企业必须遵守合规和隐私准则,否则将面临巨额罚款。然而,这些法规不断变化,新的更新需要不断地使用新的使用模式。
传统的数据治理不具备快速适应新法规的灵活性
在不断变化的世界中,主动数据治理会实时调整,以促进信息流向需要的人。数据民主化是积极治理的关键支柱,因为它使人们能够访问佳数据,并邀请他们无所畏惧地使用它。
传统数据治理的常见陷阱
传统的数据治理是一种数据优先的治理方法。这种传统方法缺乏响应数据用户需求的流动性——或者在新法规出现时适应新法规的灵活性。传统数据治理方法概述了用户角色、创建数据标准、分配责任并创建企业范围的数据策略。因为它强调对数据的控制,这种方法威胁数据文化的情况并不少见。
这种对数据控制的传统方式削弱了团队协作。事实上,这种传统的治理模式制定了僵化的政策,常常疏远甚至吓倒数据工作者。在使用任何特定数据集之前,人们必须参考文档。类似一揽子的政策会产生额外的任务,从而降低整体效率。人们被要求遵守复杂的规则,“否则”……
在这种恐惧的气氛中,人们做出“战斗或逃跑”的反应并不罕见。许多人没有遵循复杂的数据集使用规则,而是完全放弃了该数据。其他人可能会在数据管理和使用方面变得咄咄逼人。许多人将传统方法称为“命令和控制”风格,是有原因的。
随着数据治理成为一种负担,数据分析师的工作效率会下降,这通常会导致数据质量下降。然而,实施正确的治理模型可以在支持企业发展方面发挥重要作用。如果分析师和其他数据用户得到与他们一起工作的治理策略的支持,则可以在收集、存储和分析的整个周期内保持数据质量。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei456学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。