
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。本文南宁计算机培训就和大家一起了解一下大数据存储及管理技术。
在大数据时代,从多渠道获得的原始数据常常缺乏一致性,数据结构混杂,并且数据不断增长,这造成了单机系统的性能不断下降,即使不断提升硬件配置也难以跟上数据增长的速度。这导致传统的处理和存储技术失去可行性。
大数据存储及管理技术重点研究复杂结构化、半结构化和非结构化大数据管理与处理技术,解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。
具体来讲需要解决以下几个问题:海量文件的存储与管理,海量小文件的存储、索引和管理,海量大文件的分块与存储,系统可扩展性与可靠性。
面对海量的 Web 数据,为了满足大数据的存储和管理,Google 自行研发了一系列大数据技术和工具用于内部各种大数据应用,并将这些技术以论文的形式逐步公开,从而使得以 GFS、MapReduce、BigTable 为代表的一系列大数据处理技术被广泛了解并得到应用,同时还催生出以 Hadoop 为代表的一系列大数据开源工具。
从功能上划分,这些工具可以分为分布式文件系统、NoSQL 数据库系统和数据仓库系统。这 3 类系统分别用来存储和管理非结构化、半结构化和结构化数据。
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
在大数据时代,从多渠道获得的原始数据常常缺乏一致性,数据结构混杂,并且数据不断增长,这造成了单机系统的性能不断下降,即使不断提升硬件配置也难以跟上数据增长的速度。这导致传统的处理和存储技术失去可行性。
大数据存储及管理技术重点研究复杂结构化、半结构化和非结构化大数据管理与处理技术,解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。
具体来讲需要解决以下几个问题:海量文件的存储与管理,海量小文件的存储、索引和管理,海量大文件的分块与存储,系统可扩展性与可靠性。
面对海量的 Web 数据,为了满足大数据的存储和管理,Google 自行研发了一系列大数据技术和工具用于内部各种大数据应用,并将这些技术以论文的形式逐步公开,从而使得以 GFS、MapReduce、BigTable 为代表的一系列大数据处理技术被广泛了解并得到应用,同时还催生出以 Hadoop 为代表的一系列大数据开源工具。
从功能上划分,这些工具可以分为分布式文件系统、NoSQL 数据库系统和数据仓库系统。这 3 类系统分别用来存储和管理非结构化、半结构化和结构化数据。
南宁达内IT培训免费试听课程火热报名中,带你轻松入行,26大课程全国45个城市,129家中心均可就近学习,学完后,达内老师会帮助进行面试辅导,在面试前,就带你跨过可能存在的坑,让你入职更加顺利。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加3216764521学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。