
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
我们知道企业级推荐系统生成推荐结果的过程一般分为召回、排序两个个阶段(其实还包括业务调控,业务调控更多的是运营和策略性的调整,不属于狭义的算法范畴,参考第 4 章《推荐算法概述》4.2 节的介绍),先使用召回推荐算法从海量标的物中筛选出一组(一般几百上千个)用户可能感兴趣的标的物,然后在排序阶段利用更加精细化的推荐算法对结果进行重排序。
由于召回是从所有标的物中筛选用户可能感兴趣的,当标的物数量庞大时(比如今日头条有千亿级文本、淘宝有上亿级商品),即使召回算法简单,计算量也是非常大的,一般可以采用事先计算型召回策略(为了整合用户最近的行为,也可以基于用户的兴趣标签或者用户最近浏览的标的物进行近实时召回,这类召回策略也属于事先计算型,比如根据用户最近浏览的标的物召回相似的标的物,每个标的物相似标的物是事先计算好的)。而对于排序推荐算法,只需要从有限的(成百上千)的标的物中过滤出用户最喜欢的几十个,可以在较短时间内计算完,因此排序算法可以采用实时装配型策略。
当然,排序阶段也是可以采用事先计算型的,这就相当于先召回,再排序将推荐结果计算好,只不过整个推荐过程将事先计算拆解为召回和排序两个阶段来进行了。
其实,直接跟推荐接口衔接的是排序阶段,召回阶段是不直接参与 web 服务的,因此根据第二节的定义,严格意义上事先计算型、实时装配型是不能用于描述召回阶段的。不过有些产品的标的物数量不大(比如电影只有几万个),也可以将召回排序融合为一个阶段,只用一个算法就可以获得推荐结果,或者排序可以采用简单的规则和策略,这时排序逻辑可以整合到推荐 web 接口中,这两种情况召回阶段所起的作用就相当于排序阶段的作用了,这时可以说召回直接跟 web 接口进行了交互,因此也可以用事先计算型、实时装配型来描述召回阶段。
南宁达内IT培训免费试听课程火热报名中,带你轻松入行,26大课程全国45个城市,129家中心均可就近学习,学完后,达内老师会帮助进行面试辅导,在面试前,就带你跨过可能存在的坑,让你入职更加顺利
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加3216764521学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。